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Abstract: Many mineral processing data can be monitored by a time series model. This research presents 

results of analysis and simulations of a chromite processing plant data determined by time series model. 

The plant data obtained by shift to shift include feed grade, concentrate grade, tailing grade, Cr/Fe ratio in 

concentrate. All the chromite processing data were found stationary over time. The autocorrelation was 

high for feed grade and Cr/Fe ratio. Weaker autocorrelation was observed for concentrate grade and 

tailing grade. Autoregressive integrated moving average (ARIMA, 1,0,0) or first order autoregressive 

(AR, 1) model, was found to fit all data very well. The models obtained have been also shown to be used 

for the near future estimation of these data. The time constant which is an indicator of sampling frequency 

of the data sets were determined. It was found that sampling frequency was enough for concentrate and 

tailing grade and their original values can be used in process control charts for monitoring. On the other 

hand, the sampling frequency should be reduced for feeding grade and Cr/Fe ratio for the same aims 

hence ARIMA residual charts were more suitable to monitor their values.  
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Introduction 

Although process data at any time are determined by process conditions, there are 

random or probabilistic data which can only be characterized by statistical methods 

(Gleit 1985). In mineral processing plants, many data are obtained over time. The 

performance of a mineral processing plant can be evaluated by analyzing these data. 

The analysis of the resulting data properly is a very important step in understanding 

plant’s performance (Ketata and Rockwell, 2008). A set of observations in time se-

quence is defined as a time series (Ganguli and Tingling, 2001). The data from miner-

al processing plants may be evaluated by applying times series models since the data 

structure is identical to the time series form. In some processes, these observations are 
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correlated. Many quality characteristic values are a good example of a time series that 

is correlated in time domain (Ganguli and Tingling, 2001). 

Time series analysis models are very useful in modeling dynamic systems in sci-

ence and engineering applications (Capodaglio, et al., 1992). This class of models is in 

fact able to represent the dynamic features of physical systems that are subject to often 

uncontrollable inputs with random components. Mineral processing plants can also be 

considered as examples of dynamic systems, with inputs (ore characteristics, feeding 

and flow, organic loads, etc.) that vary stochastically within more or less wide ranges. 

The use of stochastic models allows a more detailed representation of the dynamic 

nature of these systems, while retaining the degree of information contained in most 

deterministic models (Capodaglio, et al., 1992). A fundamental utility of these models 

is their ability to forecast the level of the process into the future, accounting for its 

recent history and the underlying stochastic nature (Ganguli and Tingling, 2001). 

In quality control, the production achieved can be collected under two headings by 

taking into consideration the type and nature of it. If production can be measurable, 

can be weighted and can be expressed in a unit with one or more of these feature, it 

can be mentioned that the production is continuous. Otherwise, there is a discrete 

manufacturing process. However, continuous and discrete concepts in time series are 

determined according to whether the observation values are obtained from equal time 

intervals or not. In other words, if the observation values making time series are ob-

tained from unequal time intervals, the series occurred are defined as continuous time 

series. If the observations are obtained at equal or certain time intervals, they are 

known as discrete time series (Kaya, 1995). Even where the observations carried out 

continuously, the observation for the specific time intervals or based on the total value 

or can be converted by means of sampling to discrete continuous series. 

Trybalski and Cieply (2000) stated that most mineral processing unit operations are 

in principle continuous processes but the majority of continuous processes such as 

mineral processing plants can be regarded as discrete. Therefore, the processes of 

mineral processing can be regarded as discrete processes which can be described with 

time series (Trybalski and Cieply, 2000). Some applications of time series models for 

mineral/metal processing plants have been reported in the literature for different aims. 

Examples can be given such as the investigation of dynamic characteristics of the flo-

tation circuits (O’Keefe et al., 1981), the coal data from preparation plants (Cheng at 

al., 1982), the SO2 stack emissions from coal boilers (Gleit, 1985), modeling of daily 

data of metal grade or recovery (Napier-Munn and Meyer, 1999), estimation of world 

copper production (Kutlar and Elevli, 1999), the copper ore flotation (Trybalski and 

Cieply, 2000), analyzing and modeling the behavior of operators of ilmenite reduction 

furnaces (Bazin et al., 2000), the coal segregation control (Ganguli and Tingling, 

2001) and the variables of stream materials and sampling errors (Ketata and Rockwell, 

2008). The time series models have been also used for the statistical process control 

charts of autocorrelated data of mineral processing/mining applications (Samanta and 
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Bhattacherjee, 2001; Bhattacherjee and Samanta, 2002; Samanta, 2002; Elevli et al., 

2009; Taşdemir, 2012) 

The autoregressive integrated moving average, called as ARIMA time series mod-

els in short, are perhaps the most popular methods to evaluate a process variable and 

to make estimation for the future. The ARIMA time series models capture the stochas-

tic characteristics of the fluctuations in a quality levels over time (Ganguli, and Tin-

gling, 2001). 

The purpose of this study was threefold. First aim was to determine if the first or-

der autoregressive time series model, ARIMA(1,0,0) or AR(1), can be used an appro-

priate time series model in monitoring and analyzing the four types of data obtained 

from a chromite processing plant and to test the performance of models in the near 

future forecasting. The next purpose was to determine the time constants of data sets 

obtained from AR(1) models to test adequacy of sampling frequencies of data. The 

last aim was to show how weak and moderate autocorrelation of datasets affect the 

Shewhart charts of individual observations for the process control of these data sets. 

Autoregressive (AR) time series models 

Autoregressive (AR) time series models are called according to referring to the past 

period by the number of observations containing the value in the AR models. If AR 

model contains one observation values  in the past period it is called as first order AR 

model. If it contains two value of the past period of observation, it is called the second 

order AR model. In general, p-order AR model contains p historical value of the ob-

servation period in question. Let X1, X2….Xt be stationary time series (such as feeding 

Cr2O3 grade, tailing Cr2O3 grade, concentrate Cr2O3 grade etc.) The object of this 

modeling approach is to derive an expression for Xt, the value of the series at time t, in 

terms of values of the series from the past, i.e at times t–1, t–2, etc. (Cheng at al., 

1982). There must be some totally random shocks at entering the model at time t due 

to the random fluctuations in the series. General expressions of the AR (p) model are 

as follows (Montgomery et al., 2008): 

 Xt = φ1 Xt–1 + φ2Xt–2 + ...+ φpXt–p + t (1) 

Xt , Xt–1 , Xt–2,... , Xt–p are the observation values. The φ1, φ2, ...,φp are the model param-

eters which are termed the autoregressive constants 
1

1
p

i

i

  


 
   
 

 with µ denoting 

the process mean, p is the order of model, t is a random shock which is independent 

error term which reflects the amount of variation in the data which is not explained by 

the AR model and is assumed to follow a normal distribution with mean zero and var-

iance, σe
2
, which is termed white noise variance (WNV). A random shock is a random 

variable that is independent of all past history (Gleit, 1985). It accounts for any inher-

ent variance in the data. 



 A. Tasdemir 160 

In practice, the first and second-order AR models commonly used as models and 

they are shown as AR (1) and AR (2) in short respectively. In AR (1) model, an ob-

servation value at t period of a time series is explained by observation value of Xt–1 at 

t–1 period of time series and an error term. The variability associated with a chromite 

property, X, is subject to correlated and random elements. This stochastic process is 

modeled by autoregressive model of order one (i.e., an AR(1) process) with the equa-

tion: 

 Xt = φXt–1 + t (2) 

where: Xt  measurement at time t,   

Xt–1  measurement at time t–1,  

φ) µ, µ is the process mean 

φ  autocorrelation coefficient (–1 < φ < 1),  

t  error term, normal random shock at time t.  

The AR (1) model implies that each observation depends on the previous one to an 

extent defined by φ (Napier-Munn and Meyer, 1999). The autoregressive parameter, φ, 

is a measure of the autocorrelation between the past data point Xt–1 and the current data 

point of Xt.  

Autocorrelation  

Autocorrelation in a time series, meaning the correlation between current observations 

(Xt) and observation from p periods before the current one (Xt–p) (Montgomery et al., 

2008). In a given series, the autocorrelation at lag p which ranges from –1 to +1 is the 

correlation between the Xt, and Xt–p pairs and is given by: 

 1
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. (3) 

Theoretical autocorrelation functions (ACFs) and partial autocorrelation functions 

(PACFs) (autocorrelations versus lags) are available for the various models chosen.  

Many important conclusions about a time series can be made according to the correlo-

grams which a plot of sample ACFs/PACFs versus lags obtained for a data set when 

choosing an appropriate time series model. More details can be found in Montgomery 

et al (2008). For example, ACF of a characteristic AR model slowly approaches zero 

and its PACF spikes at lag p. Therefore, the model is most probably characterized by 

ARIMA (1,0,0) or AR(1) when there is a significant spike only at lag 1 of the PACF 

(partial autocorrelation between Xt and Xt–1) and the ACF slowly declines.  



 Analysis of chromite processing plant data by first order autoregressive model 161 

The Time Constant (T) 

Rius and Callao (2001) and Callao and Rius (2003) used the time constant (T) that is 

related to the behavior of AR(1). The T parameter is calculated by the following equa-

tion for the AR(1) model: 

 
1

1

ln
T


  . (4) 

The time constant is an indicator which controls the appropriateness of sampling 

frequency. It provides a time constant for eliminating autocorrelation if the frequency 

of analysis can be decreased. When it equals to 1, we can conclude that the sampling 

frequency might be enough. If T is equal to two, the sampling frequency can probably 

be cut by half. In case of its value 3, it means that it can probably be cut by a third. 

The data autocorrelation disappears when the sampling frequency decreases (Rius and 

Callao, 2001; Callao and Rius, 2003). The time constant of the system indicates the 

sampling frequency that must be reduced to apply control charts to the original data. In 

other words, the time constant of time series obtained by Eq. 4 is used to determine 

whether sampling frequency is correct (Rius and Callao, 2001).  

Methodologies 

The data sets were obtained from a chromite processing plant in Turkey to monitor 

chances shift by shift, in four dataset characteristics in 30 days time period. These are 

Cr2O3 per cent of feeding ore, concentrate Cr2O3 content, tailing Cr2O3 content and 

Cr/Fe ratio of concentrate. Three shifts in a day are applied at the plant. Therefore, 93 

observations in total for each data set which was collected from December 1 to De-

cember 31, 2011 were obtained and used in the study.  

Since the observation values obtained from chromite production process have oc-

curred from the measurements in each shift, these observations have been obtained at 

equal time intervals. Therefore, the time series obtained was a series of discrete time 

series. However, the observation values that the continuous observation characteristic 

features carry measurable. The ARIMA model data sets can be used. 

For each data set, the model parameters of time series were estimated by applying 

ARIMA time series model (known as Box-Jenkins model). Software of Minitab 16 

and trial version of Statgraphics Centurion XVI were used for the statistical analyses 

of data sets. The time series models which have the lowest AIC (Akaike Information 

Criterion) values are selected for representing the best model for each data set. The 

residuals of the models were evaluated by residual analysis. The near future forecast-

ing performances of the models were also performed by comparing the real data with 

estimated data. In addition, effect of Shewhart charts of individual observations were 

compared with the X control charts based on ARIMA residuals to examine the effect 

of autocorrelation on the performance of the Shewhart chart. The time constants of 
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data sets required for the estimation of sampling frequency to reduce the autocorrela-

tion for the usage of original data with control charts were also determined.  

Results and discussions 

Autocorrelation and Time Series Models  

The time series of four data sets are shown in Fig. 1. Mineral processing plant produc-

tion data often exhibit great variability with time (Napier-Munn and Meyer, 1999). 

Napier-Munn and Meyer (1999) stated that most mineral processing data moves 

around, both from day to day in an apparently random fashion and in short or long-

term trends or cycles, even if over a long period the mean remains approximately con-

stant. We can see all these statements on the time series plots presented in Fig. 1. 

There are two major kinds of time series. The one is the stationary time series which 

both the mean and variance of the values remain stable over time. The other one is the 

non-stationary time series which the mean or variance, or both, change with time. By 

applying a difference process, a non-stationary series can make a stationary series 

(Huang et al., 2002). As it can be seen clearly, all chromite data sets exhibit a station-

ary behavior over time and there is no trend and no need to a difference process to the 

data.  
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Fig. 1. Time series plots of four data sets of chromite processing plant 



 Analysis of chromite processing plant data by first order autoregressive model 163 

For the stationary control of the time series of four chromite data, their ACF plots 

are also generated and presented in Fig. 2. It is seen that these ACF patterns of data 

sets show typical stationary time series, because they are cutting off or tailing off near 

zero after a few lags. There are significant autocorrelations at first lag for feeding  
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Fig. 2. Autocorrelation (ACF) and partial autocorrelation (PACF) functions  

for four chromite data sets with 5% significance limits 
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grade (rp = 0.728) and Cr/Fe ratio (rp = 0.493). The tailing grade (rp = 0.327) and con-

centrate grade (rp = 0.178) exhibited weaker autocorrelation compared to other two 

datasets. Moreover, ACF values of data sets decrease or decay very quickly (Fig. 2). 

In contrary, a non-stationary time series decay very slowly and exhibits sample auto-

correlations that are still father large even at long lags (Montgomery et al., 2008). 

Therefore, it can be concluded that they are all may be considered as stationary time 

series. There exists serial autocorrelation of chromite processing data over one shift 

time intervals.  

According to the PACF plots of datasets in Fig. 2, they all followed the AR(1) 

model since they all, except concentrate grade, show a significant spike (significant 

autocorrelation) at lag 1 followed by no apparent pattern meaning that all the higher-

order autocorrelations are effectively explained by the lag 1 autocorrelation. When the 

PACF displays a sharp cutoff while the ACF decays more slowly as in the Fig. 2, the 

series displays an AR signature and the autocorrelation can be explained more easily 

by AR terms (Montgomery et al., 2008). The statistical test results also confirmed that 

the data sets except concentrate grade data, are best described by the AR(1) model 

according to the automatic time series model selection module of Statgraphics soft-

ware taking into lowest AIC (Akaike Information Criterion) value. 

The AIC is a function of the variance of the model residuals, penalized by the 

number of estimated parameters. In general, the model that minimizes the mean 

squared error without using too many coefficients is selected. As seen in Fig. 2, the 

concentrate grade data has little autocorrelation value which can be ignored. It is 

found to be best described by constant mean or ARIMA (0,0,0) time series model 

having an AIC value of –0.3942. On the other hand, the AR (1) model which has an 

AIC value of –0.3936 was found the second best model for this data set. Considering 

the very small differences between the two AIC values, the AR(1) model which was 

the best for other data sets was also used in this study for the concentrate grade data. 

The parameters of the AR(1) models for the four datasets are summarized in Table 1. 

According to the t values and corresponding p values, all data sets have p-values 

smaller than 0.05 indicating the suitability of model parameters. Only p value of auto-

correlation for concentrate grade was 0.089 but it was also accepted to use the AR(1) 

model to evaluate the results according to the reasons explained above.  

We obtained the following AR(1) models for the four data sets in the form: 

 Xt = 0.726Xt–1 + 1.669 (feed grade), 

 Xt = 0.176Xt–1 + 38.131 (concentrate grade), 

 Xt = 0.325Xt–1 + 1.981 (tailing grade), 

 Xt = 0.485Xt–1 + 1.175 (Cr/Fe ratio). 



 Analysis of chromite processing plant data by first order autoregressive model 165 

Table 1. Parameters in AR(1) models for four datasets 

Feed grade,  Cr2O3 % 

Parameter Estimate Stnd. Error t p-value 

AR(1) 0.726 0.072 10.105 0.000 

Mean, µ 6.101 0.145 42.109 0.000 

Variance, σ 0.329    

WNV, σe
2 0.158    

Constant,  1.669    

Time constant, T 3.123    

Box-Pierce Test based on first 36 autocorrelations 0.949 

Concentrate grade, Cr2O3 % 

Parameter Estimate Stnd. Error t p-value 

AR(1) 0.176 0.102 1.719 0.089 

Mean, µ 46.297 0.100 460.308 0.000 

Variance, σ 0.659    

WNV, σe
2 0.647    

Constant,  38.131    

Time constant, T 0.576    

Box-Pierce Test based on first 36 autocorrelations 0.609 

Tailing grade,  Cr2O3 % 

Parameter Estimate Stnd. Error t p-value 

AR(1) 0.325 0.105 3.097 0.003 

Mean, µ 2.933 0.044 67.255 0.000 

Variance, σ 0.092    

WNV, σe
2 0.084    

Constant,  1.981    

Time constant, T 0.889    

Box-Pierce Test based on first 36 autocorrelations 0.114 

Cr/Fe ratio 

Parameter Estimate Stnd. Error t p-value 

AR(1) 0.485 0.093 5.234 0.000 

Mean, µ 2.282 0.010 221.911 0.000 

Variance, σ 0.004    

WNV, σe
2 0.003    

Constant,  1.175    

Time constant, T 1.382    

Box-Pierce Test based on first 36 autocorrelations 0.930 

WNV – White noise variance 

Residual Analysis of AR(1) Models 

Diagnostic checks of the residuals of four data sets through sample ACF plots and 

residuals plots are presented in Fig. 3 and in Fig. 4, respectively. Plots imply that we 

have a good fit for all the data sets. The Box-Pierce (Q-statistics) of the residuals for 

the data sets in Table 1 is based on the sum of squares of the first lag 36 autocorrela-

tion coefficients. Since the p-values for this test are greater than 0.05 for all data sets, 
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we can conclude that the residual series are random at the 95% level. These results are 

confirmed by the ACF graphs of residuals for four data sets as shown in Fig. 3 since 

the examinations of ACF graphs of the residuals did not differ from the conclusions of 

Box-Pierce tests.  
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Fig. 3. Autocorrelation functions (ACF) for the residual values  

obtained from AR(1) models with 5% significance limits 

Figure 4 plots the residuals for the time series models that fit the four chromite da-

ta. In these plots, four types of residual presentation format obtained by Minitab soft-

ware are given. The plots in the upper left-hand portion of the display are a normal 

probability plot of the residuals. The residuals of data sets lie generally along a 

straight line, so the normality assumptions are satisfied properly. According to the 

histograms of the residuals presented in the lower left plots in Fig. 4, they do not give 

any serious indication of nonnormality. The upper right plots are the residuals versus 

the fitted values. These plots indicate the ideal patterns with essentially random scatter 

in the residuals. If these plots had exhibited a funnel shape, it could be indicate prob-

lems with the equality of variance assumption (Montgomery et al., 2008). The lower 

right plots are the plots of the observations in the order of the datasets. If these were of 

the order in which the data were collected, or if the data were a time series, this plot 

could reveal information about how the data may be changing over time.  

According to the all results regarding to the residuals of the AR(1) models, the 

models can be used for the forecasting and process control charts. 
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Fig. 4. Residual plots from AR(1) models for four chromite datasets 

AR(1) Model Fits to Datasets and Forecasting Performances 

The AR(1) time series models to capture the stochastic characteristics of the fluctua-

tions in the four chromite data sets over time and their forecast values using these 

models are given in Fig. 5. As it can be seen in the actual versus fits plots, the selected 

AR(1) models of datasets follow the actual data closely. As a result, the plots do not 

reveal any problems with AR(1) model fits to the original data of chromite data sets. 

These results are consistent with literature. Some mineral and mineral processing data 

have been shown to be modeled by simple a AR(1) model. For example, Napier-Munn 

and Meyer (1999) showed that mineral processing plant performance data of daily 

metal recovery or concentrate grade followed a first order autoregressive time series 

model, AR(1), for a zinc flotation plant. Meyer and Napier-Munn (1999) have shown 

that dependence in the daily gold feed grade and gold recovery data can be described 

by the AR(1) model. Elevli et al (2009) has also found recently that the AR(1) model 

was a suitable model for the contents of B2O3% at the two colemanite concentrator 

plants in Turkey. Similarly, Bhattacherjee and Samanta (2002) have shown that 

Al2O3% and SiO2% constituents of a bauxite ore can be estimated by a simple AR(1) 

model. However, it does not mean that all mineral processing data can only be mod-

eled by an universal AR(1) model since other time series models such as ARMA for 

flotation (Trybalski and Cieply, 2000), ARMA for SO2 emissions (Gleit, 1985) and 

ARMA and ARIMA models for coal data (Taşdemir, 2012) have been also reported 
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depending on the nature of the data.  Several coal data sets were found to fit often 

AR(1) models but not always (Cheng et al., 1982). 
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Fig. 5. Actual values versus fits plots by AR(1) models  

with four days estimation within 95% confidence limit 

To test the performances of AR(1) models, the real data of last twelve shifts data 

values (observation values from 82 to 93 shifts) were estimated by the models for each 

data set and these results were compared to real data values. Shown in the plots of 

Fig. 6 are the results obtained within 95% confidence limits. As seen clearly from 

these plots, the results are very good for feed grade and tailing grade since most esti-

mated data points are near to real values and all estimated points are within the 95% 

limits. The results can be also considered well for the other data sets. However, there 

is an unusual point in these plots exceeding the 95% limits. The unusual point at shift 

87 is below the control limit for concentrate grade and Cr/Fe ratio. Since the variabil-

ity of the chromite feeding grade does not change and within the confidence limits in 

the twelve shifts, this unusual point may be attributed to the measurement/analysis 

errors or unusual plant working conditions of plant at 87
th
 shift rather than variability 

of the chromite.  

In the plots in Fig. 5, we can also see the forecasting lines drawn from estimation 

points with their 95% confidence intervals for future 4 days (12 shifts) after 30 days 

(after shift 93). According to the above results, the estimation of near future values of 

four variables can be made conveniently by applying their AR(1) models. Therefore, it 

is possible to make any preventive and corrective actions for the quality characteristics 

of chromite by using AR(1) models since these models can also forecast for the near 
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future of any data using past data of the processes. Estimation for the future values of 

data sets can reduce the operating costs. 
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Fig. 6. Estimation of dataset values by AR(1) models versus actual values for the 82–93 shifts 

Time Constant and Individual Control Charts of Original Data and ARIMA   

Residuals 

The time constant (T) was found to be 3.123 for the feed grade implying that the fre-

quency of measurements need to be reduced by dividing it by 3 to eliminate the auto-

correlation. Other T values were found as 1.38, 0.889 and 0.576 for the Cr/Fe ratio 

(Table 1), tailing grade and concentrate grade respectively. These results revealed that 

sampling frequency needs to be reduced by dividing approximately by 1.5 for the 

Cr/Fe ratio. Since the T values are smaller than 1, there is no need to reduce sampling 

frequency for tailing grade and concentrate grade. For fast fluctuating processes as in 

the concentrate grade and tailing grade, T is small and simple ACF decays quickly to 

zero (Callao and Rius, 2003). However, fast fluctuations are more common in the 

concentrate grade data which has the smallest time constant.  

The effect of autocorrelation may cause wrong decisions for the monitoring of data 

by statistical process control charts (SPCs). Its effect has been shown also important 

for many mineral processing/mining applications of SPCs (Samanta and Bhattacher-

jee, 2001; Bhattacherjee and Samanta, 2002; Samanta, 2002; Elevli et al., 2009; 

Taşdemir, 2012). Figure 7 compares the individual charts of Shewhart and ARIMA 

residuals (special cause charts) with additional Western Electric rules which are ap-

plied to improve the efficiency of control charts for small shifts. The number of West-
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ern Electric rules applied was four as the same in our previous study (Taşdemir, 2012). 

The details of the method can be found elsewhere (Montgomery and Runger, 2011). 

The values of data sets were presented as normalized on the y axes these plots to make 

the comparisons easily. Since our data sets had different autocorrelation degree, this 

analysis showed the efficiency of the Shewhart charts of individual observations on 

the four data sets of chromite processing plant having from weak to moderate autocor-

relations.  

3.00

X- Individual Chart for Feed Grade

0 20 40 60 80 100

Observation

-5

-3

-1

1

3

5

Z 0.00

-3.00

3.00

ARIMA Residual Chart for Feed Grade

0 20 40 60 80 100

Observation

-5

-3

-1

1

3

5

R
e
s
id

u
a
l

0.00

-3.00

X- Individual Chart for Concentrate Grade

3.00

0 20 40 60 80 100

Observation

-7

-5

-3

-1

1

3

5

Z

0.00

-3.00

ARIMA Residual Chart for Concentrate Grade

3.00

0 20 40 60 80 100

Observation

-7

-5

-3

-1

1

3

5

R
e
s
id

u
a
l

0.00

-3.00

 
X- Individual Chart for Tailing Grade

3.00

0 20 40 60 80 100

Observation

-6

-4

-2

0

2

4

6

Z 0.00

-3.00

ARIMA Residual Chart for Tailing Grade

3.00

0 20 40 60 80 100

Observation

-5

-3

-1

1

3

5

R
e
s
id

u
a
l

0.00

-3.00

 
X- Individual Chart for Cr/Fe Ratio

3.00

0 20 40 60 80 100

Observation

-5

-3

-1

1

3

5

Z 0.00

-3.00

ARIMA Residual Chart for Cr/Fe Ratio

3.00

0 20 40 60 80 100

Observation

-5

-3

-1

1

3

5

R
e
s
id

u
a
l

0.00

-3.00

 

Fig. 7. Comparison of individual and ARIMA residual control charts  

of four chromite data sets 
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The Shewhart individual chart performs better when the datasets exhibit weak au-

tocorrelation as in the case of concentrate grade and tailing grade. It shows almost the 

same results with ARIMA residual charts of individuals for these two data. However, 

when the autocorrelation increases, the number of wrong out of control points increas-

es in the charts of original data compared to their ARIMA residual charts. These ef-

fects can be seen clearly on comparative charts of Cr/Fe ratio and feed grade variables. 

The Shewhart individual chart also performed weaker for Cr/Fe ratio data which has 

moderately autocorrelated data to catch the right out of control points. It showed the 

worst performance for the feed grade data which has the highest autocorrelation be-

tween the data sets when it is compared with its ARIMA residual chart. Only one 

point was out of control according to the residual chart while this number in original 

data was 39 points with Western Electric rules applied. This would cause wrong deci-

sions about the homogeneity of chromite ore feed to plant. Almost the same wrong 

conclusion can be given when the Cr/Fe ratio with original data was evaluated by the 

Shewhart individual chart. The number of out of control points was 3 in the ARIMA 

residual chart of individual although it was 21 in the individual chart. The perfor-

mance of the Shewhart individual chart has been shown better for weak positive and 

negative autocorrelation and got worse with increasing autocorrelation (Karaoğlan and 

Bayhan, 2011). These results clearly indicate and reconfirm that autocorrelation must 

be taken into account when applying Shewhart individual chart whether the process is 

under control or not since wrong decisions can be given for the process control appli-

cations.  

Meyer and Napier-Munn (1999) confirmed that the data dependence or autocor-

relation can be reduced in mineral processing plants by increasing sampling frequency 

or sampling intervals. Reversely, the autocorrelation between the data obtained can be 

increased by decreasing the sampling frequency or sampling intervals. In this situa-

tion, time constants which are obtained by the AR(1) models may provide a tool for 

eliminating autocorrelation which is something that must be considered if we can de-

crease the frequency of the analysis (Rius and Callao, 2001). It has been suggested by 

the Rius and Callao (2001) and Callao and Rius (2003) that time constants can be used 

to reduce the autocorrelation for applying the Shewhart individual chart to the original 

data. It is seen that the original data of concentrate grade and tailing grade can be used 

for control charts. It was determined that sampling frequencies needs to be reduced for 

feed grade and Cr/Fe ratio variables by cutting 3 and 1.5, respectively, to use their 

original values with control chart. Rius and Callao (2001) concluded that sampling 

frequency is decreased in order to apply control charts to the original data. They also 

stated that the decrease in the sampling frequency has the advantage since there may 

not need to use time series models once the optimum frequency has been established. 

However, they also took attention that a drawback would be detected later. This find-

ing is especially right for the mineral processing systems since there are many causes 

of the data variability including the error in sampling and grade and real variation in 

performance due to changes in ore mineralogy. Small changes in ore mineralogy of 



 A. Tasdemir 172 

feed material may not be determined by using long sampling intervals. As a result, 

reducing the sampling frequency may cause a drawback due to the inefficiency in 

homogeneity control of the feed grade properly since the feeding is made as a mixture 

of ores from different chromite mines. In conclusion, usage of autocorrelated data and 

AR(1) residuals seem to be a more suitable approach to control the homogeneity in 
the feed grade with control charts. 

Conclusions 

In this study, an analytical technique, time series, was used to quantify the correlated 

and random components of the variability in four variables of chromite data. The data 

of feed grade and Cr/Fe ratio values were found more moderately autocorrelated than 

the other data sets over time. The data from the concentrate grade exhibited weakest 

autocorrelation than the other data sets. The ARIMA (1,0,0) or AR (1) models were 

found to fit well for all data sets obtained from a chromite processing plant. The sam-

ple ACF plots as well as further residual plots of the AR(1) models of data sets re-

vealed that no autocorrelation was left in the data and the models give reasonable fits 

for all data sets. AR(1) is the first order model indicating that their values are strongly 

dependent on their previous measurements. The model considers the autocorrelation 

between measurements and random shock error term that cannot be explained by the 

model.  

The AR (1) time series models can accommodate the autocorrelated nature of 

chromite dataset levels when estimating parameters to characterize the process. It is 

shown that the AR(1) models can be used to forecast the near future estimation of data 

sets investigated. Only one point was out of 95% confidence limits on the actual and 

estimated plots for concentrate grade and Cr/Fe ratio. The reasons may be attributed to 

the operating conditions and to the measurement errors since the homogeneity of feed 

grade was supplied by the plant for this point. Moreover, they also provide forecasting 

capability to take preventive actions that will be useful in process control.  

The AR(1) model have been also shown a potential applications to be used for ho-

mogeneity control of feed grade, concentrate grade, tailing grade and Cr/Fe ratio in a 

chromite processing plant. Whether original data can be used or not may be deter-

mined by the degree of autocorrelation during the application of the Shewhart charts 

of individual to detect the right out of control points. The number of out of control 

points increases with increasing autocorrelation and this causes no suitability usage of 

original values with Shewhart charts. Consistent with literature, when time constant 

obtained by the autocorrelation of AR(1) model is smaller than 1, we can use original 

data, otherwise it is suitable to use the ARIMA residual charts to detect right out of 

control points for the data sets having higher time constants.  
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